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choice and use of this nematode as an experi-
mental organism for genetics, with particular
focus on the period in the 1960s when the
brain was declared to be the “last remaining
frontier” for biological investigation. The
worm was first chosen for investigation into
the nervous system, but proved to be useful
for exploring many other biological processes.
I argue that early work with C. elegans can
best be viewed as part of a descriptive tradi-
tion in biological practice, and that such
descriptions are essential as the basis for suc-
cessful subsequent experimental and explana-
tory work, as becomes evident on a close
examination of the history of the field.

Choosing Caenorhabditis elegans
In June of 1963, Sydney Brenner (FIG. 1) wrote
in a letter to Max Perutz, the then director of
the Laboratory of Molecular Biology (LMB)
in Cambridge, UK, that “nearly all the ‘classi-
cal’ problems of molecular biology have either
been solved or will be solved in the next
decade … the future of molecular biology lies
in the extension of research to other areas of
biology, notably development and the ner-
vous system”4. Brenner had done extensive
work primarily in bacteria and bacteriophage
genetics at what came to be known as the
LMB. He and Francis Crick, head of the
Division of Molecular Genetics at the LMB
and Brenner’s long-time office partner, had a
series of conversations in late 1962 to decide
in which direction to take their research.
These conversations were in part spurred on
in early 1963 by institutional factors, such as
the interest of the Medical Research Council
(MRC) in expanding the LMB5 and the
trends in biology at that time, which were
leading away from molecular biology. During
this era and after various successes in molecu-
lar biology, notably the identification of the
structure of DNA and the details of the cod-
ing mechanisms associated with it, several
prominent biologists had begun to use partic-
ular organisms to study behaviour and the
nervous system. These biologists shared
Brenner’s view that many, if not most, of the
‘interesting’ problems of molecular biology
were solved or close to being solved. Ralph
Greenspan claims that the almost unanimous
convergence on the nervous system as the
new problem of interest “was not by design or
agreement, but reflected the sense that here
lay the greatest challenge and mystery”6. So,
what has come to be known as “the worm
project” arose in the context of a framework
greatly influenced not only by the successes
and limitations of previous work with bacte-
ria and bacteriophage, but also by a particular
vision of biology, including what molecular
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correlating development and structure with
genetic mutations in this organism, using
technologies that were unavailable to earlier
researchers.

The 1960s neurobiological revolution 
Brenner was not alone among molecular biol-
ogists in viewing neurobiology as the new
frontier for research. One of the earliest
attempts to connect genetics and behaviour
had been made by Julius Adler, who in ~1960
began to study chemotaxis — the movement
of cells in response to a chemical stimulus —
in the bacterium Escherichia coli14. He had
searched for a simple system in which to
study a basic behavioural process “in the hope
[that] some underlying principles might be
discovered that are applicable at many differ-
ent levels of biological complexity”15. By the
mid-1960s, Adler and others working with
him had isolated several mutants, some of
which failed to recognize certain attractive
agents and others which were generally non-
chemotactic16,17.

In the mid- to late 1960s, several other sci-
entists turned to the study of behaviour and
the nervous system, and to a more limited
extent to the study of development, through
the use of different model organisms. Other
projects that also used genetic methods to
understand behaviour, and that are frequent-
ly cited as peers of the worm project, includ-
ed the study of: the rotifer and Daphnia
(among other organisms) by Cyrus
Levinthal18; the leech by Gunther Stent19; and
Drosophila melanogaster by Seymour Benzer,
which was probably pursued most extensive-
ly. Benzer selected Drosophila in ~1965, after
a failed attempt at working on the flatworm
Planaria20, because detailed genetics of the fly
were already available, and as a compromise
between the human and E. coli in terms of
mass, number of neurons, genome size and
generation time21. He was able to isolate a set
of phototaxic mutants by simply allowing
flies to run towards a light source and by sep-
arating the population according to their
responses22. His assumption was that such
mutants could be genetically analysed to
reveal sensory mechanisms. As Greenspan
has put it: “what made his approach so irre-
sistible to some, and so infuriating to others,
was its technological simplicity and its indif-
ference to current trends in neuroscience”23,
as it ignored the traditional approaches of
neurobiology, which were largely anatomical
and biophysical.

By contrast, reports communicated
between the MRC and the LMB in 1966
began to stress the investigation of the anato-
my and development of the nervous system

biology had achieved and where it might
make significant future contributions.

Brenner’s initial proposal to Perutz out-
lined a global approach that primarily
focused on examining development through
genetic analysis, with a long-term goal of
investigating the development of the ner-
vous system. Among other projects, includ-
ing research on morphogenetic gradients
that expanded Crick’s earlier work on pat-
tern formation, Brenner proposed working
on several “model systems”, which were to be
“small metazoa, chosen because they would
be suitable for rapid genetic and biochemical
analysis”7. He also noted that there had been
much success with bacteria, particularly in
the analysis of lethal mutants and that this
“has suggested … that we could use the
same approach to study the specification
and control of more complex processes in
cells of higher organisms”. Among the topics
of investigation suggested were cell division
using ciliates, control of flagellation and cili-
ation using “amoeboflagellates”, and the
study of development by “taming” a small
metazoan organism, perhaps an insect.

Much work has been done on how organ-
isms become standardized tools, particularly
Drosophila8 and mice9. The story of the stan-
dardization of C. elegans differs in a signifi-
cant way from most of these histories.
Brenner recounts scouring zoology textbooks
in search of a single organism to use as a
research focus, one that would match his
basic, explicit criteria for a model organism.
These criteria included: first, a rapid life cycle,

thus allowing growth of large populations in
a short period of time and increasing the like-
lihood of rare spontaneous mutations (a
strategy that had proven highly successful in
work with bacteria and bacteriophage); sec-
ond, a simple reproductive cycle and genome,
such that the genetics of the organism was, in
principle, tractable; and last, small size, so that
large populations could be generated and
stored, again increasing the likelihood of
mutations, and so that single animals could
be examined in the window of an electron
microscope to elucidate structural details.

Brenner set out with the goal of obtaining
an organism to fulfil all these criteria largely
by making a careful organismal choice to start
with, rather than focusing on inbreeding and
other typical standardization techniques.
Most standardization occurred owing to the
choice of a strain of an organism thought to
be relatively invariant in several biological fea-
tures. This strategy clearly derived from bac-
teria and bacteriophage work in which
inbreeding is fairly trivial.

Several classes of organism were under
active consideration during this period,
including several protozoa such as
Dictyostelium, Naeglaria and Tetrahymena.
Brenner eventually came to focus on the
lower metazoa, in part because of a book he
read dedicated to these organisms (edited by
an early proponent of Caenorhabditis10), and
also because several of them seemed to fulfil
his basic criteria. On further consideration,
Brenner had concerns about working with
most of these organisms; these concerns were
deeply connected to his beliefs about what
could serve as an appropriate model for mul-
ticellular organisms and their development.
He was interested in something that was rep-
resentative and on which he could work at
various levels simultaneously, which many of
these organisms would not have allowed.

After a brief flirtation with a related
nematode, Caenorhabditis briggsae, Brenner
obtained a culture of the Bristol strain 
of C. elegans (BOX 1) from Ellsworth 
C. Dougherty, who had worked extensively
with the organism. Similar nematodes had
been studied since the late 1800s in terms of
cell lineage, and these investigations had
shown that their developmental processes
were relatively invariant11. Furthermore,
Richard B. Goldschmidt had done detailed
work on neural wiring in a larger but related
nematode, Ascaris, that had also revealed
invariant structures12,13, but that had fallen
into disrepute owing to its apparent lack of
reproducibility. Brenner was well aware not
only of these early results and the possibility
of substantiating them, but also of further
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Figure 1 | Sydney Brenner at the Laboratory of
Molecular Biology in the 1960s. (Photograph
kindly provided by the MRC Laboratory of
Molecular Biology, Cambridge, UK.)
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the so-called ‘black box’ approach that had
proven successful with bacteriophage.
Although nutritional mutants were initially of
interest because they were more likely to be
biochemically tractable, attention quickly
shifted to morphological and motility
mutants, with the latter proving more
straightforward to manipulate and exploit
experimentally (and of course more directly
related to Brenner’s neurobiological interests).
Brenner began to treat cultures of C. elegans
hermaphrodites with a solution of ethyl
methanesulphonate (EMS) — an alkylating
agent known to be a mutagen — which had
been used on other organisms, including bac-
teriophage and Drosophila, in the hopes of
creating morphological mutants. He varied
the concentrations of EMS and the length of
time that worms were exposed to it to assess
phenotypic effects and survival rates.
Eventually, an individual was identified that
was considerably reduced in length. When the
isolate was allowed to reproduce through self-
fertilization, its progeny were also short and
‘dumpy’ compared with the wild-type worms.
Therefore this new strain, named E1, was
identified as the first true-breeding mutant in
C. elegans. Backcrosses to the wild-type back-
ground determined that the dumpy pheno-
type was due to an autosomal-recessive muta-
tion, which eventually became known as allele
e1 of the gene dpy-1 (REF. 28).

From 1967 until the early 1970s, over 300
EMS-induced mutations were identified,
most of them recessive (see TIMELINE). The
bulk of mutations were those that affected
behaviour, primarily resulting in worms that
were defective in movement (‘uncoordinat-
ed’); other mutations altered the size and
shape of the worms, including the dumpy
mutant, as well as other aspects of its mor-
phology. These mutants allowed the charac-
terization of ~100 genes, which were mapped
into six linkage groups — the six chromo-
somes that had been previously identified29.
This approach relied on describing and
maintaining an independent concept of what
counted as wild-type C. elegans. In this way,
genetics provided mutants that were defec-
tive in movement and that might reveal
information about the nervous system,
something that previous nematological and
parasitological work had not provided in
enough detail, especially for the phenotypes
that came to be of particular interest to
Brenner and his group.

Although at least the first five years of
work on C. elegans focused on developing
the genetics of the organism, Brenner main-
tained his long-term interests in exploring
the nervous system, emphasizing that it was

the worm to show how simple organisms
might be used to determine the precise devel-
opment and structure of at least parts of the
nervous system, as well as possibly allowing
investigation into the genetic determination
of the nervous system27.

Brenner’s first line of attack at the start of
the worm project in the mid-1960s was to
establish the genetic wild type and to create
biochemical (primarily nutritional) mutants.
The earliest stages of the C. elegans work were
focused on purely genetic inputs and outputs,

in nematodes among the aims of the lab24,25.
The emphasis on the nervous system at that
time revealed Brenner’s strong interest in it,
as well as his underlying belief that the ner-
vous system was the most elaborately devel-
oped system, as it involved not only basic
biochemical functions but also more com-
plex mechanisms for the differentiation of
neuronal connections and physical struc-
tures. The presence of rigidly defined neural
connections from individual to individual in
invertebrates, and especially in nematodes,
indicated to Brenner that such connections
might be produced genetically, making the
descriptive mapping of the nervous system
an ideal way to gain insight more generally
into development.

This conceptualization of the project had
been crystallized by 1967, when Brenner was
invited to give a talk to the Biological
Research Board of the MRC about the future
of molecular biology. In accepting the invita-
tion, he wrote in a letter to the principal med-
ical officer of the MRC, who was coordinating
the talk, that “I have changed my interests
from molecular genetics to a rather vague
field of the development and structure of the
nervous system”26. In his talk, entitled
“Molecular Biology and the Nervous System”,
Brenner used the lab’s preliminary work on

“…nearly all the ‘classical’
problems of molecular
biology have either been
solved or will be solved in
the next decade … the
future of molecular biology
lies in the extension of
research to other areas of
biology, notably
development and the
nervous system.”

Box 1 | Worm farming

Caenorhabditis elegans is a free-living nematode, ~1 mm in length, with relatively simple
behaviours and structures. A complete life cycle takes three days, during which the worm 
goes through four larval stages. There are two dimorphic sexual forms — a self-fertilizing
hermaphrodite and a smaller male, which is rarer and can fertilize hermaphrodites. The sexual
forms make inbreeding and the control of genetic types extremely simple. The organism is
transparent throughout its life cycle, making observation of its structure and many biological
processes possible by microscopy. (Photograph by Henri van Leunen, kindly provided by
Jonathan Hodgkin, Genetics Unit, Department of Biochemistry, University of Oxford.)
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However, causal explanations were diffi-
cult to obtain for neurobiological processes,
particularly given the available techniques.
So, it became clear that among the questions
that needed to be answered before the rela-
tionship between the genetic ‘programme’32

and behaviour could be examined was
whether every nerve cell is unique from every
other and how precisely the cells and their
connections are specified. The detailed draw-
ings of the neural connections in the larger
related nematode Ascaris, produced by
Goldschmidt using conventional microscopy,
were difficult to interpret, although
Goldschmidt had concluded from these dia-
grams that neuron processes formed a syncy-
tial network. Because he had not unambigu-
ously resolved individual processes in nerve
bundles, the connections shown in his dia-
grams were thought by some to be artefacts
of the relatively low resolution he was able to
obtain. Consequently, Brenner felt this task
could be best accomplished in the even
smaller worm, C. elegans, by using serial elec-
tron micrograph sections to determine neur-
al connections, the so-called ‘wiring diagram’.
So, the study of behaviour and neurophysiol-
ogy was de-emphasized in favour of estab-
lishing a description of neural structure as a
necessary step towards understanding genet-
ics and behaviour.

The eventual result of this project was
the mapping of the architecture of the ner-
vous system by reconstructing (largely by
hand) 8,000 prints from serial-section elec-
tron micrographs, done by John White
together with Eileen Southgate, J. Nichol
Thomson and Brenner. This project was
completed in ~1984, resulting in an enor-
mous article published several years later,
known in short as “The Mind of a Worm”33.

amenable to molecular attack. The underly-
ing hope was that detailed knowledge of the
nervous system, together with relatively
simple patterns of motion and behavioural
response in C. elegans, would lead relatively
easily to determining the functions of vari-
ous parts of the nervous system. In what
was perhaps the earliest published article
that discussed the worm project, Brenner
stated that “[i]n principle, it should be pos-
sible to dissect the genetic specification of
behaviour much in the same way as was
done for biosynthetic pathways in bacteria

or for bacteriophage assembly”30. This type
of bravado on Brenner’s part generated
what has been characterized as “overt hostil-
ity” by those already working in the field of
neurobiology, partly because his announce-
ment of his project was “… perceived by
many neurobiologists, not unreasonably, as
an indictment of their field. According to
one prominent neurobiologist, the message
they heard was, ‘If you only had your heads
screwed on right, you could clear up the
mess in this field. It’s only your ignorance
that has prevented it’”31.
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Figure 2 | Copy of original laboratory notebook drawings by John Sulston. Drawings of the
observations of cell division taken from a dorsal view of the pharynx on May 6, 1980. Hundreds of such
drawings were made to record the complete cell lineage for Caenorhabditis elegans. (Kindly provided by
John Sulston, The Sanger Centre, Cambridgeshire, UK.)
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collecting”, as some have derogatorily
termed it, at least when much is known
about an organism (such as in the case of
C. elegans), the sequencing of model organ-
isms is yet another vital resource with
important historical precedents.
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The elucidation of the cell lineages laid
the groundwork for what has became a
rapidly expanding field of study. Knowledge
of the cell lineages provided the basis for cor-
relating mutations and developmental
processes. Cell-ablation studies, in particular,
allowed more precise examination of aber-
rant development. New genetic mapping and
sequencing techniques were applied to the
worm, resulting in more information at the
molecular level and eventually the entire
genome sequence for the organism. The lat-
est research focuses on knocking out particu-
lar genes to determine their precise functions
and interrelations, and studies on develop-
ment, neurobiology, ageing and learning, to
name only a few areas.

Many model organisms now provide
unprecedented resources owing to the
availability of data, not only on their genet-
ic sequences but also on other biological
processes that can be correlated with
sequences and protein products. The histo-
ry of the development of C. elegans as a
model organism reveals the need to articu-
late extensive descriptions of the material to
be used before the development of particu-
lar hypotheses or theories. This is not to say
that biological work with model organisms
does not depend on a range of background
theories and assumptions. Instead, the
claim is that there must be a proto-explana-
tory phase in which a descriptive model of
an experimental organism is developed.
Such models seem to occur more frequently
and play more fundamental roles in biolog-
ical sciences but they certainly are not
unique to these disciplines. Because they
are inherent to scientific practice and epis-
temology, they are potentially more inter-
esting to investigate than the more abstract
models that are typically explored in the
philosophy of science. Indeed, the genome
sequence itself is a form of description, a
preliminary step on the way to a potentially
deeper understanding of biological process-
es. Far from being mere “molecular stamp

It included diagrams that represented each
nerve cell with its connections, side by side
with the electron micrographs from which
the diagrams had been abstracted. These
diagrams were actually a mosaic of the ner-
vous systems of many worms, but were pre-
sented as a ‘canonical nervous system’. It was
concluded that C. elegans has 302 neurons,
which are grouped into 118 types on the
basis of various anatomical and histochemi-
cal criteria. The neurons form a total of
~8,000 synapses throughout the hermaph-
rodite (a complete map of the male neural
connections has never been made). By com-
paring the nervous systems of genetically
identical individuals, the researchers found
essentially the same connections, with
minor differences in cell morphology, posi-
tion and connectivity. In short, the task that
had been abandoned just after the turn of
the century by Goldschmidt had now been
completed, and had laid the foundation for
the correlation of genes, developmental
processes and structure.

The worm’s legacy
Brenner’s choice of C. elegans seems to have
been partially influenced by the desire to do
something no one had been able to do (or
that none of his peers was likely to be able to
do with the organisms they had selected): to
achieve a complete understanding of a sim-
ple organism. He quickly noted that the
organism he had selected had certain attrib-
utes that allowed what some have viewed as
an extreme approach (Horace Judson has
termed it the “brute force” approach34),
namely the complete description of all
detectable genetic mutants, as well as of the
structure of the nervous system. Others in
the LMB group soon took a similar tack
with the developmental processes in the
organism, observing and documenting the
complete cell lineages in the worm. The first
of this kind of study was done by John
Sulston on the post-embryonic develop-
mental lineages in the ventral cord35; this
work, together with subsequent studies that
culminated in the complete lineage36,37 (FIG.

2), is considered by those in the worm com-
munity (and other biologists) as a tour de
force in the tradition of classic lineage stud-
ies. It has recently been compared to Charles
Darwin’s observations on the differences in
finch beaks in an article that lamented the
lack of funding for “basic research”, particu-
larly of the descriptive kind38. This compari-
son is less telling for research funding as it is
for what it reveals about the need for
descriptive biology as the epistemic basis for
revolutionary research.

“[i]n principle, it should be
possible to dissect the
genetic specification of
behaviour much in the
same way as was done for
biosynthetic pathways in
bacteria or for
bacteriophage assembly”
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